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An Autonomous Vision-Based Mobile Robot

Eric T. Baumgartner and Steven B. Skaar

Abstract— This paper describes the theoretical development
and experimental implementation of a complete navigation pro-
cedure for use in an autonomous mobile robot for structured
environments. Estimates of the vehicle’s position and orientation
are based on the rapid observation of visual cues located at
discrete positions within the environment. The extended Kalman
filter is used to combine these visual observations with sensed
wheel rotations to produce optimal estimates continuously. The
complete estimation procedure, as well as the control algorithm,
has been developed to be time independent. Rather than time, a
naturally suitable quantity involving wheel rotations is used as
the independent variable. One consequence of this choice is that
the vehicle speed can be specified independently of the estimation
and control algorithms.

Reference paths are “taught” by manually leading the vehicle
through the desired path in a manner similar to the teaching of
industrial holonomic robots. Estimates produced by the extended
Kalman filter during this teaching session are then used to
represent the geometry of the path. The tracking of taught
reference paths is accomplished by controlling the position and
orientation of the vehicle relative to the reference path. Position
estimates have been determined to be accurate to within one
inch. Also, the reference paths are tracked precisely such that
the position error typically does not exceed one inch. Time-
independence path tracking has necessitated the development of
a novel, geometry-based means for advancing along the reference
path. Also novel is a means to accommodate the finite time
interval which separates the instant at which images are acquired
from the instant as which the processed image information
becomes available to update the estimates. i

1. INTRODUCTION

ANY autonomous mobile robots developed for struc-
tured environments rely on guide paths either embed-
ded in or painted on the floor to navigate the robot around the
desired workspace [1], [2]. Such mobile robots are adequate
for point-to-point tasks where the guide paths do not change
over time. Many researchers have realized that mobile robots
may need to navigate around their environment without the
use of guide paths. Therefore, the accurate estimation of a
vehicle’s position and orientation relative to its environment
becomes critical for precise navigation. Some mobile robots
navigate based on position and orientation estimates which are
produced by using wheel rotation information alone [3], [4].
This type of estimation has been referred to as dead reckoning.
However, dead-reckoned estimates of the position and orien-
tation of the vehicle will be inaccurate over long distances
traveled due to imprecisely known initial conditions, errors
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in the kinematic model of the vehicle, or disturbances during
the motion of the vehicle, such as wheel slippage. Therefore,
external observations of the surrounding environment must
be made during the motion of the vehicle to correct these
dead-reckoning errors.

Robotic vehicles have been developed which rely on a visual
sensor [5], [6], an optical rangefinder [7], and a sonar or
ultrasonic sensor [8]-[10] to observe the surrounding envi-
ronment. On these vehicles, however, the sensors are used
only to correct the dead-reckoned estimates based on the most
current measurement set. Each measurement is assumed not
to be corrupted with any noise, and, therefore, the accuracy
of the estimates is limited by the accuracy of the sensor-
based measurements. These methods also assume that the
measurement or measurements can fully observe the state of
the vehicle, i.e., the position and orientation of the vehicle
can be solved for analytically based on the measurement
information acquired at a single junction during the motion
of the mobile robot.

Recently, a few researchers have realized that new mea-
surements should be weighted according to some scheme
which takes into account both the confidence or certainty in
the current estimates of the vehicle’s position and orientation
and the accuracy of the current measurements. Therefore, no
one piece of information is limiting, and a combination of
past and current measurements is used to estimate optimally
the position and orientation of the vehicle. Cox [11] has
investigated the use of a laser rangefinder in a structured
environment to produce position and orientation estimates
via a linear least-squares regression algorithm. Leonard and
Durrant-Whyte [12] have also investigated a method to weight
incoming measurement information using, instead, a ring of
sonar sensors positioned around a mobile robot. Both of these
systems assume that an accurate map of the environment is
available or that one can be generated [13]. These systems
also require that range measurements from the sensors match
with the predicted locations of objects within the environment
based on the current estimates of the vehicle’s position and ori-
entation. When using the above methods in cluttered settings,
it is difficult to determine which object within the environment
the sensor is actually detecting. Also, proximity-type sensors
only provide information about the distance from the sensor to
objects in the environment. In a large corridor, for example,
mobile robots which rely on proximity sensors will only be
provided with information about the vehicle’s distance from
the corridor walls and the orientation of the vehicle relative
to the corridor walls. Both methods described above will not
update, and will lose confidence in, the estimates along the
corridor unless the end of the corridor can be observed by the
proximity sensor.
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In contrast, the mobile robot presented in this paper depends
on a visual sensor to update and correct optimally those

position and orientation estimates which are based on wheel-

rotation information alone. The extended Kalman filter [14],
[15] is applied in this paper to an autonomous mobile robot
to weight incoming visual observations of the surrounding
environment to produce minimum-variance position and orien-

tation estimates of the vehicle. Observations of the surrounding -

environment are made via a single camera mounted on the
vehicle which detects small, ring-shaped cues which are placed
at discrete locations within the environment. These visual
cues can be detected rapidly by an image-analysis algorithm
every 0.1 seconds. As opposed to the laser rangefinder and
the sonar sensor, the visual observation of the wall-mounted
cues provides complete information about the position and
orientation of the vehicle. Therefore, even in long corridors,
both components of translational position as well as orientation
will be estimated accurately. The visual cues also provide a
distinct signal which is unaffected by other objects within the
environment. The reliable and accurate detection of the visual
cues produces robust position and orientation estimates even
in complex and cluttered settings.

_ A controller for the autonomous mobile robot has been
developed for tracking complex reference paths. Desired refer-
ence paths are taught by manually leading the vehicle through
the desired path. In an analogous way, fixed-base holonomic
manipulators are routinely taught certain paths to follow by
manually leading the manipulator through the path or by using
a teach pendant to specify points along the path to follows.
This teaching procedure is a critical step for performing such
tasks as spot welding, assembly, or spray painting in factory
environments. Unlike these holonomic robots, where joint
rotation is algebraically related to the position and orientation
of the end effector, a nonholonomic device such as the
robotic vehicle allows at most a differential description of the
constraining relationship between internal wheel rotations and
the vehicle’s position and orientation, and simple repetition
of the wheel rotations will not generally result in complex
path tracking due to imprecise knowledge of initial conditions
or wheel slippage. Therefore, during the teaching of desired
reference paths, the extended Kalman filter algorithm is used
to produce accurate estimates of the position and orientation
of the vehicle. A representation of the taught reference path is
then used by the controller for tracking the desired reference
path.

The controller developed in this paper also relies on the
extended Kalman filter to produce accurate estimates of posi-
tion and orientation to determine the vehicle’s location with
respect to. the reference path. The normal and angular errors
of the vehicle relative to the reference path are then passed
through a PID controller to determine the desired velocities
to be commanded to the two drive wheels. A novel aspect of
the controller is that the speed the vehicle travels along the
reference path is specified independent from the path-tracking
algorithm. Because of this, the speed of the vehicle can be
adjusted in response to any number of possible contingencies.
The controller also has the ability to return to the desired
reference path following an unexpected departure. Such a

departure might be due, for example, to the avoidance of an
unanticipated obstacle.

Both the estimation and control algorithms can be applied
to either forward or backward maneuvers. Both algorithms,
however, require some modifications for backing-up maneu-
vers. Because the estimation and control algorithms are carried
out serially on a single processor, real-time operation is accom-
plished by interspersing wheel-rotation sensing throughout the
image processing algorithm, since this algorithm requires the
greatest amount of computational time. Since the extended
Kalman filter assumes that measurements are available at the
exact instant at which the measurements are sampled, a novel
method has been developed for accounting for the finite time
between the acquisition of a video image and the identification
of cues in that image. This method is necessary because, for the
real-time application of the extended Kalman filter presented
in this paper, the vehicle generally advances while the image
processing takes place.

A novel description of the time-independent differential
kinematics of the vehicle is presented in Section II, while
Section III describes the vision-based estimation algorithm
used to produce optimal estimates of the vehicle’s position and
orientation. Section III also presents the method developed for
accounting for the interval between the acquisition of an image
and the detection of a visual cue in the acquired image. The
method used for teaching desired reference paths is described
in Section IV while the controller developed for tracking the
desired reference paths is presented in Section V. Experimental
results concerning the accuracy of the vehicle’s position and
orientation estimates produced by the extended Kalman filter
and the tracking accuracy of the controller are presented in
Section VL

II. VEHICLE KINEMATICS

Many kinematic models describing the motion of various
vehicle configurations have been developed [3], [71, [11].
These descriptions usually involve expressing the time deriva-
tives of the vehicle’s position and orientation in terms of time-
based quantities such as the rotational speed of the vehicle’s
wheels. Recently, vehicle kinematics which are independent
of time have been derived for a vehicle with a tricycle
configuration [16], [17]. A similar kinematic description is
presented in this paper for the drive configuration pictured
in Fig. 1, where two front wheels are driven independently,
producing both translational and rotational control of the
vehicle. The back wheels consist of two free-to-rotate castor
wheels. For the vehicle configuration presented in this paper,
as shown schematically in Fig. 2, an independent variable,
«, can be defined as the average forward rotation of the two
front drive wheels, while a control variable, u, can be defined
as the difference between the differential rotations of the front
two drive wheels normalized by the sum of the differential
rotations of the front two drive wheels, i.e.,

_ 0, +6,
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Fig. 1.

Autonomous vision-based mobile robot.

where 6, and 6, represent the forward rotations of the right
and left drive wheels, respectively, and df, and df; represent
the differential forward rotations of the right and left drive
wheels. For this choice of the independent variable and the
control variable, kinematic state equations of the vehicle can
be written in the following state space form

dz(c) dX(a)/da
2(e) = == = |dY(0)/do | = f(z(a), u(a)) (2.3)
* d(c)/dex

where z represents the three-element state vector which for
this problem is defined by the two translational coordinates
of a selected point on the vehicle (X, Y) and the in-plane
orientation of the vehicle (¢) as shown in Fig. 2, and where f
represents a set of three nonlinear functions of the state. For
example, if the selected point on the vehicle is chosen as the
midpoint between the two front drive wheels (i.e., the center
of rotation of the vehicle), then the kinematic state equations
would be

dX(a)/da Rcos ¢(a)
z'(a) = |dY(a)/da | = | Rsin¢(a) 2.4
dé(c)/da %u(a)

where R represents the radius of the drive wheels and b
represents half the distance between the drive wheels. This
kinematic description is independent of time.

If precise initial conditions of the position and orientation
of the vehicle are known, then the above kinematic state equa-
tions (2.3) can be integrated numerically or “dead-reckoned”
by determining the independent variable, o, and the control
variable, u, using information from two optical shaft encoders,
one for each wheel. Truncation errors due to the finite precision
of any numerical integration scheme, disturbances during the
motion of the vehicle (e.g., wheel slippage), or inaccuracies
in the kinematic model of the vehicle will cause errors in
the position and orientation estimates of the vehicle to grow
over long distances. The nature of the estimation method
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Fig. 2. Vehicle schematic.

presented in the following section is to correct any errors in the
integrated or dead-reckoned estimates of the vehicle’s position
and orientation via visual observations of the surrounding
environment as they become available.

III. VISION-BASED ESTIMATION

The autonomous vehicle uses a visual sensor to view the
surrounding environment and to update and correct the dead-
reckoned estimates of the vehicle’s position and orientation.
If detectable cues are placed or located at known positions
within the operating workspace of the vehicle, then the location
of detected cues in the image plane of the video camera
mounted on the vehicle will provide some information which
is related to the position and orientation of the vehicle within
the workspace. Cues which may be recognizable from discrete
video data include simple ring shapes (which are used in the
experiments reported herein and have been used extensively in
the positioning of holonomic and nonholonomic robots [16],
[18]), electric wall outlets, corners of rooms and doorways.
If the computational time necessary for detecting these cues
remains manageable, then vision can be used to update the
position and orientation estimates of the vehicle in real-time.

An observation equation, which relates a measurable quan-
tity to the state of the vehicle, can be determined for the single
visual sensor placed on the vehicle. Using a pin-hole model for
the video camera [19], the horizontal location of a cue in the
image plane of the camera, z., (measured in pixels) is related
to the three-element state vector via the following nonlinear
algebraic relationship

. Xcos(¢+Cy)+Ysin(¢+Cs) —Co
T ' Xsin(¢p+Cy) —Ycos(¢p+ Ca) — C3

where C,, Ca, Cs3, and Cy are calibration parameters which
depend in part on the focal length- of the camera and the
position and orientation of the camera on the vehicle. This
relationship can be expressed in the general form

#(ea) = h(z(ea))

where z represents the measurement, 5 represents a nonlinear
observation function, and o, is the value of the independent
variable at the instant at which an image is acquired.

An algorithm for rapidly detecting the centroid of ring
shapes [18], which are used in this problem as the visual
cues, is used both to calibrate the video camera and to update
estimates during real-time operation. A typical ring-shaped

3.1
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Fig. 3. Visual cues.

cue, and the view of this cue in the image plane of a video
camera mounted on the vehicle, is shown in Fig. 3. The cues
may be either white centered or black centered. All cues,
however, are constructed such that the diameter of the central
ellipse is equal to the width of the surrounding ring. Detection
of such a cue is based on the simple geometric fact that
a circular or elliptical cue, viewed from any perspective, is
nearly elliptical in the image plane of the camera. Thus, any
line through the center of the cue will cut the cue in symmetric
lengths of alternating black and white. The cue detection
algorithm scans the image plane for patterns which result in
symmetric lengths of black and white. When this pattern is
identified, the algorithm searches in three more directions (one
vertical, two diagonal) to confirm that the pattern is indeed a
ring-shaped cue. Rapid and reliable detection of the cues via
this algorithm has been achieved as one cue can be detected
on the order of once every 0.1 seconds using a 80386-based
processor.

The calibration parameters in (3.1) are determined in a
least-squared-error sense using Marquardt’s method [20] by
detecting the horizontal location of the cue in the image
plane of the camera at known positions and orientations
of the vehicle. The resultant calibration parameters for the
current configuration of the camera on the vehicle are given
in Table I. Fig. 4 shows the measured and best-fit horizontal
locations of the cues in the image plane of the video camera
for each of the 96 cue observations used in the calibration
procedure. The best-fit image-plane horizontal locations of the
cues are determined by substituting the measured positions
and orientations of the vehicle into (3.1) using the optimal
calibration parameters given in Table I. The mean of the
absolute value of the error between the measured and best
fit cue locations for this calibration set is 2.601 pixels with a
standard deviation of 1.972 pixels. The mean of the error for
this calibration set represents only 0.51% of the total image
plane resolution of 512 pixels.

The kinematic state equations (2.3) and the observation
equation (3.2) have the required form for the application of
a standard state estimation algorithm to determine the position
and orientation estimates of the vehicle. The extended Kalman
filter for the continuous-discrete problem [14], [15] is applied
to this system. This algorithm produces minimum mean-
square-error estimates when the noise associated with the state
equations, known as process noise, w(a), is assumed to be a
zero-mean, Gaussian distributed, white noise process with a
known covariance matrix, Q (o). The noise associated with the
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Fig. 4. Camera calibration results.

TABLE I
CAMERA CALIBRATION PARAMETERS
Calibration
Parameter Value
C 767.67 pixels
Co 4.07 inches
Cs 8.94 inches
Cy 2.29 radians

observation equations, known as measurement noise, v(ca,),
must be assumed to be a zero-mean, Gaussian, white process
with a known covariance matrix, R{¢, ). The process noise and
the measurement noise are assumed to be‘uncorrela_tcd. Thus,
consider a system described by state equations and observation
equations of the form

z'(e) = f(z(e), w(a)) + w(e) (3.3)

E(aa) = b(i(aa)) + E(aa)~ 34

Clearly for the system presented in this paper, the process
noise and the measurement noise will not be a Gaussian,
white noise processes. Nonetheless, Section VI will show
that estimates produced by the extended Kalman filter are
physically accurate.

When observations are not available, the nonlinear kine-
matic state equations (2.3) are used to propagate the estimates
of the state, denoted by Z(c), by integrating numerically
the state equations (i.e., dead reckoning) via a fourth order
Runge—Kutta integration scheme [20]. A linearization of the
state equations about the current estimate of the state is used to
propagate the estimation error covariance matrix of the state,
denoted by P(c). When observations become available, the
extended Kalman filter algorithm uses a linearlization of the
observation equations (3.1) about the current estimate of the
state to update both the state and its estimation error covari-
ance-matrix. The extended Kalman filter algorithm proceeds
according to the following three steps.

1) The state estimates, £(c), and the estimation error
covariance mattix, P(c), are initialized at o = 0.
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2) The state estimatés and the estimation error covariance
matrix are propagated when observations are not available by
integrating numerically the following differential equations:

& (a) = F(&(a), u(e)) (3.5

P'(a) = f(é(a), u(e))P(a)
+P(a)FT(&(a), u(a)) + Q(a) (3.6)

where

9f(z, )

F(@(0), u(e)) = ==

(CN))]
z=2(a)

u=u(a)

3) The state estimates and the estimation error covariance
matrix are then updated when observations are acquired at oq:

Z(aalaa) = £(aa) + K(aa)[z(0a) — A(E(ca))] (3.3)

P(agla,s) = [I = K(a.)H((aa))]P(0a) (3.9

K (o) = P(aa)HT (#(0a))
[H(#(0))P(ea) HT (2(aa)) + R(ea)] ™ (3.10)

where

(o)) = 222

= lz=g@(o)

(3.11)

and #(a,) and P(a,) are the propagated state estimates
and the propagated estimation error covariance matrix, re-
spectively, which are determined by Step 2 just prior to the
acquisition of an observation at .

Note that the independent variable, o, for this filter can run
either forward or backward depending on whether the vehicle
is proceeding forward or backing up. Since the extended
Kalman filter normally is applied to systems where time is the
independent variable, the case where time runs backwards is
not normally considered. For the appliéation presented in this
paper, however, this case must be considered. The propagation
of the state estimates (3.3) is valid for forward or backward
maneuvers. To make the filter for backward maneuvers equiv-
alent to the forward filter, however, the propagation of the
estimation error covariance via (3.4) must be modified. For
backing-up maneuvers, (3.4) must be modified as follows:

P'(a) = F(&(e), w(a))P(a)
+P(a)FT (&(a), w(a)) - Q(a) (3.12)

where this reiationship is derived by setting & = —a in (3.4)
and evaluating the result. All other aspects of the filter remain
the same.

In conventional Kalman filter applications, the measure-
ments or observation are assumed to be available at the exact
instant at which they are acquired. For the real-time vision-
based application presented in this paper, this assumption
is not valid due to the finite computational time needed to
detect a visual cue in an acquired video image. In general the
independent variable, o, advances (i.e., the vehicle moves)
while the image processing is taking place, and the detection
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of a visual cue does not occur until some finite value of a
after the image has been acquired. Therefore, a novel method
is developed below to transition the relevant information from
the visual measurements from the value of o at which the
video image is acquired to the value of « at which the cues
in the video image are actually identified.

If o, represents, as before, the value of o at which the video
image is acquired and o, represents the value of o at which
the image processing is complete and cues in the image are
identified, then the estimates of the state at c, can be updated
with the cue information acquired by the video image taken
at o, by the following linear relationship

#(aplaa) = £(op) + Ad(ap) (3.13)

where #(ap|a,) denotes the state estimate at oy, given the
observations up to o, and where £(ap) is propagated up to
ap via the kinematic state equations (3.5). Taking derivatives
of (3.13) with respect to a, yields

& (aplaa) = £'(ap) + A2 (ap) (.14)
however,
& (oploa) = f(&(aploa); w(ap))
= f(&(ap) + Ak(ep), u(oy))
- f(éa), ulep) + L2
-AZ(ap) + - “=u(%)(3.15)
and
& (ap) = f(&(ap), ulap))- (3.16)

Substituting (3.15) and (3.16) into (3.14) and keeping only
first-order terms yields

Ai’(ap) = F(&(ap), u(ap)) AZ(ap) G.17)
where
. 0f(z, u)
F(2(ap), u(ap)) = oz eston (3.18)
The solution of (3.17) in general is given by
Ag(a) = B, ao) Ad(ag) (3.19)

where the state transition matrix, ®(c, ap), is found by solving

(o, ap) = F(&(c), u(a))®(a, ao) (3.20)

with the initial condition ®(ag, ao) = I where I is the n X n
identity matrix (for this problem, n = 3). Therefore, from
(3.13), the state estimate at ¢, given the observations up to
Qa, E(ap|aa), is given by
E(aplas) = #(ap) + AZ(ap)

= &(ap) + ®(ap, aq) Ag(a)

= &(ap) + B(ap, 0){i(talea) — E(0)]

= #(ap) + ®(ap, o) K (@)

[2(0a) — A(E(2a))] (3:21)
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where the state transition matrix in (3.21) is propagated in real
time by integrating numerically (3.20) from o, to o,. Note the
similarity of (3.21) to the update equation (3.8) associated with
the conventional extended Kalman filter. In (3.21), the change
in the estimate due to new observations at ¢, is transitioned
via the state transition matrix to c,. A similar method is used
to update the estimation error covariance matrix, P, at ap
using the observations at a,.

IV. REFERENCE PATH TEACHING

Based on the position and orientation estimates produced
by the extended Kalman filter algorithm presented in Section
III, desired reference paths to be followed are ‘taught’ to the
vehicle. A ‘teach-repeat’ mode is typically used in the control
of holonomic or fixed-based robotic systems which are used
extensively in industrial applications. A desired path is taught
to the holonomic robot by using a teach pendant to record
the joint-rotation sequences of settings which result in the
completion of the desired task. The task is then repeated by
playing back the taught joint rotations. For holonomic systems,
the joint rotations are algebraically related to the position and
orientation of any point on the robot. Therefore, a sequence
of joint rotation settings will result in the same position and
orientation of the point on the robot independent from the
order in which the sequence of joint rotations is repeated
and independent of the way in which the joints transition
from setting to setting. For a nonholonomic robot, such as the
mobile robot, however, the wheel (joint) rotations are at most
differentially related to the position and orientation of the robot
as shown in Section II, and the position and orientation of the
mobile robot is dependent on the way in which the sequence
of wheel rotations is repeated. Likewise, a different terminal
position and orientation of the vehicle will be achieved for
the same joint rotation sequence if, for example, the initial
conditions for the vehicle are different for successive runs of
the vehicle.

To achieve a teach-repeat mode similar to the holonomic
robot, the nonholonomic system described in this paper is
taught by guiding the vehicle through the desired path. During
the teaching procedure, estimates of the vehicle’s position
and orientation are generated. The taught path is then saved
in a manner which is compatible with a tracking procedure
which, in turn, is used to repeat the taught path. This teach-
ing procedure holds many practical advantages over other
alternative methods where paths are planned based on the
complete floor plan of the environment. In practice, knowledge
of this type is not enough to ensure precise navigation of the
vehicle especially when approaching an area which requires
tight-tolerance maneuvers (e.g., passing through a door). Also,
motion which is required to bring the vehicle to a desired
position and orientation may involve a complex series of
maneuvers (i.e., backing up and going forward again). Such
maneuvers may be difficult to achieve by means of an artificial
path planning algorithm. The use of a teacher allows the
judgment of the teacher to be invoked. Humans are very adept
at controlling nonholonomic systems, and the use of a human

to teach paths provides a high level of path planning capability
which is otherwise difficult to achieve.

As shown in the next section, the control of the vehicle
when tracking the desired reference paths is independent of
time, and, thus, the rate at which the vehicle travels along the
path is specified independent from the path tracking algorithm.
Therefore, let the desired reference path be expressed as
functions of the arc length of the path, i.e., let X;r = Xyet(8),
Yiet = Yiet(s), and ¢ret = oref(s) where s represents the
arc length of the path. For example, the entire reference path
or a segment of the reference path can be specified by the
following polynomial functions:

L
Xeet(s) = Y _ass" @1 .
=
Ll
Yiet(s) = ) _bus' “2)
K:O
$ret(s) = ) a8’ 3)

1=0

where a;, b;, and ¢; are polynomial coefficients and L is
the desired order of the polynomial functions. The estimation
sequence generated by the extended Kalman filter during the
teaching of the reference path is then used to fit the above
polynomial functions to the entire path or to segments of the
path. Typically, linear functions of the arc length (i.e., L = 1)
are used to represent segments of the desired reference path.
The reference path parameters ag, a1, bg, b1, ¢, and ¢; are then
determined by fitting a straight line over a group of position
and orientation estimates produced by the extended Kalman
filter.

The above procedure allows the desired reference path to be
expressed in terms of the specific workspace. In other words,
small absolute errors which may occur in the placement or
the location of the cues in the workspace will be included in a
certain sense within the taught reference path. If the workspace
is large, the positioning or locating of visual cues will become
less accurate in absolute terms as the distance of the cues
from the origin of the coordinate system increases. Therefore,
position and orientation estimates of the vehicle based on the
extended Kalman filter are generated in relation to that subset
of cues which appear in the image plane of the vehicle’s video
sensor in any particular region of operation. Even though the
estimates may not be physically accurate in a global sense, the
estimates will be locally accurate in terms of their relationship
to one another. Thus, desired reference paths which are taught
based on current estimates of the position and orientation of
the vehicle will be locally accurate. Therefore, the tracking of
these reference paths will also be locally accurate, which is
the desired performance characteristic.

V. PATH TRACKING AND CONTROL

Many conventional control systems proposed for au-
tonomous robotic vehicles command a series of reference
positions and orientations at a fixed time interval. These
autonomous vehicles must control both the translational and
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Fig. 5. Vehicle navigation and control.

rotational velocities of the vehicle to follow the desired
reference path [3], [11]. If the autonomous vehicle falls
behind the reference sequence, the time-based controller
will command the vehicle to miss certain sections of the
reference path to ‘catch up’ with the commanded reference
sequence. For example, large errors created by an obstacle-
avoidance maneuver would cause the vehicle to fall behind
the time-based reference sequence. The autonomous robotic
vehicle presented in this paper is required to track precisely the
desired reference path rather than simply arrive at a prescribed
location. Thus, a time-based controller would be incompatible
with this objective.

As shown in Fig. 5, navigation of the vehicle can be based
upon tangential, normal, and angular errors with respect to
the desired reference path which is taught as discussed in the
previous section. The errors between a point on the vehicle
and a point on the reference path in the tangential, normal,
and angular directions are given by

et = (Xret(3) — X(a)) cos $(a)
+(Yeet(s) = Y(a)) sing(a) (5.1)

en = (Xret(8) — X () sin ()
~(Yeet(8) = Y (@) cos d(a) (5.2)

e = bret(s) — d;(a)

where X(a), Y (), and ¢(a) represent estimates of the
position and orientation of the vehicle as determined by the
extended Kalman filter algorithm described in Section III. For
time-based controllers, the error in the tangential direction, e,
is used to control the speed that the vehicle travels along the
reference path [3]. Instead, for the control algorithm presented
in this paper, the error in the tangential direction is used to
determine the juncture along the reference path which is to be
used as the reference point for control. This novel approach
allows for the speed of the vehicle as it proceeds along the
reference path to be specified independent from the tracking
of the reference path.

At any instant, estimates of the position and orientation of
the vehicle are known. Therefore the only unknowns in (5.1)
are e; and s. For example, if one chooses e; = 0 in (5.1) and

5.3)
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L =1 in (4.1) and (4.2), then (5.1) yields

e: = 0 = (ag + a;8 — X(@)) cos e
+(bo + bys — Y(a))sind(a) (54)

where aqg, a1, bg, and by are known from the reference path
teaching procedure described in the previous section. Solving
(5.4) for s yields

[(ag — X (@)) cos () + (b ~ V(@) sind(e)] 5 o
[ax cos @(a) + by sin ()]

where s is the value of the arc length along the reference path
of the point to be used for control purposes. Once the value of s
is known, the error in the normal direction, e,,, and the angular
error, ey, are determined via (5.2) and (5.3), respectively. By
choosing e; = 0, the value of s given by (5.5) yields the
point along the reference path which is directly normal to the
vehicle.

The commanded control variable defined in (2.2) is then
determined by passing the error in the normal direction and
the error in the angular direction through a PID controller

de

{a]
u=k’16n+k2/ en do + k3 n +k4e¢
da
«
+ks / esdo + ks% (5.6)

where ki, ko, k3, ks, ks, and k¢ are chosen to produce
the desired closed-loop response. The rotational velocities
commanded to the right and left front driving wheels, 8, and
6;, respectively, are then found by the following relationships:

. db, dab |

0, = Ti-t— = EE& = aref(]. + u) .7
5 _ d0¢ _ daie_l . _

ol—— dt = dt da —aref(l u) (5.8)

where cyef represents the separately-determined reference
translational speed of the vehicle. The above procedure for
controlling the motion of the vehicle is based only on the
position and orientation of the vehicle with respect to the
desired reference path. Therefore, the control of the vehicle is
independent of time because the reference point is computed
while the vehicle is in motion rather than being an a priori
function of time.

The reference translational speed of the vehicle, dyef, can
be specified based on the type of motion desired, such as
accelerated, constant speed, or decelerated motion. The control
strategy presented in this section allows the speed to be altered
for a variety of reasons. For example, if the certainty in the
estimates decreases during tracking, the forward speed may be
reduced so that more visual cues can be observed to increase
estimation accuracy. The vehicle’s speed may also affect the
accuracy of the path tracking due to inertial effects, and the
speed may be reduced during complex portions of the path.
In other words, the translational speed of the vehicle could be
increased or decreased due to the simplicity or complexity of
the desired reference path.
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As stated in Section III, backing-up maneuvers require a
modification to the estimation algorithm. They also require
some modification to the control algorithm presented in this
section. The stability of the controller is affected by the point
on the vehicle in terms of which the translational position
is described [21]. It turns out that any point on the vehicle
which is forward of the two drive wheels is a stable point
in terms of control if the vehicle is moving forward. For
backing-up maneuvers, however, any point behind the two
drive wheels results in control stability. Any point along the
line joining the two drive wheels is suitable for either forward
or backward maneuvers. Also, because of the definition of
the control variable, the sign of the control gains differs for
forward and backward maneuvers. For forward maneuvers, the
control gains operating on the error in the normal direction,
ky, ko, and k3, should all be negative while the control gains
operating on the error in angular direction, k4, k5, and kg,
should all be positive. For backing-up maneuvers, the control
gains operating on the error in the normal direction should
remain negative; the control gains operating on the error in
angular direction, however, should reverse in sign and should
be negative.

VI. EXPERIMENTAL RESULTS

The autonomous vehicle pictured in Fig. 1 carries an 80386-
based personal computer to perform the image analysis, es-
timation of the position and orientation of the vehicle, and
reference path teaching and tracking, all in real-time. A single
standard closed-circuit television video camera is used for
observing the wall cues. Within the personal computer, a
frame-grabber board is used for image acquisition while a
two-axis motor controller board is used both for sampling the
wheel rotations and for commanding the drive wheel velocities
required for path tracking. Optical shaft encoders are used
for sensing the drive wheel rotations. Currently the vehicle is
tethered for electric power alone. Estimates of the position and
orientation of the vehicle are produced every 40 milliseconds
while the estimates are updated via new observations of visual
cues every 0.1 seconds.

The experimental workspace for the autonomous vehicle is
shown in Fig. 6. Ten cues are spaced around the workspace
as shown in Fig. 6 approximately one foot from the floor.
To investigate the ability of the state estimation algorithm
to produce accurate position and orientation estimates of the
vehicle, the vehicle was physically pushed through a series of
paths and stopped at various junctures. At these junctures, an
image was recorded and the centroids of any cues appearing
in the image plane of the video camera were detected. The
extended Kalman filter algorithm presented in Section III was
used to produce estimates of the position and orientation of the
vehicle. The position estimates were then compared with the
measured or actual position of the vehicle. The errors between
the actual and estimated position estimates in the X and YV
direction were then computed. Table IT shows the average
of the absolute value of ‘the errors between the actual and
estimated vehicle positions for various trials. This table shows
that estimation errors in the position of the vehicle do not

@ wall cue locations
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Fig. 6. Experimental workspace.

TABLE I
AVERAGE ESTIMATION ERROR

Average estimation Average estimation

Trial error in the X direction error in the Y direction

(inches) (inches)
1 0.596 0.817
2 0.386 0.193
3 0.240 0.321
4 0.333 0.488

exceed one inch. Although the orientation of the vehicle was
not measured, orientation estimates produced by the extended
Kalman filter appeared to be accurate as well.

Since the autonomous vehicle has the ability to estimate ac-
curately its position and orientation within a given workspace,
complex desired reference paths can be taught as outlined
in Section IV. The vehicle was taught a path to follow
by manually leading it through a path and by generating
the desired reference path in the form of (4.1)—(4.3). The
estimation algorithm described in Section III was used to
determine estimates of the position and orientation of the
vehicle during this teaching mode. Groups of 15 estimates
were then used to fit linearly (i.e., L = 1 in (4.1)—(4.3)) these
estimates to one segment of the reference path. The segments
of a desired reference path to be tracked by the vehicle are
shown in Fig. 7. The entire reference path shown in Fig. 7
includes 146 segments. This limited amount of data can be
stored easily within the onboard computer during the tracking
of the desired reference path. Note that the desired reference
path requires the vehicle to back up. This maneuver occurs
at approximately Y = 70 inches and between X = 75 and
125 inches. Also note that the desired reference path avoids
the large obstacle in the middle of the workspace. Since the
desired reference path was taught by a human operator who
will undoubtedly avoid anticipated obstacles, the vehicle when
tracking the desired path will also avoid anticipated obstacles.

Fig. 8 shows the autonomous vehicle tracking the desired
reference path. To begin the tracking procedure, the vehicle
was placed approximately in the desired starting location.
Once the vehicle starts is motion and the estimation procedure
begins, any errors in the initial placement of the vehicle or
errors in the assumed initial conditions will be corrected in
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the estimation process. Fig. 9 shows the tracked path again,
along with those vehicle positions where a cue centroid was
detected by the image processing algorithm. Note that in some
regions of the tracked path, no cues appear in the image plane
of the video camera. In these regions, position and orientation
estimates of the vehicle are based on dead reckoning alone.
Once cues again appear in the image plane of the camera
mounted on the vehicle, they are included in the position and
orientation estimates of the vehicle. The vehicle tracked the
taught reference path such that the maximum error in the
normal direction, e,, never exceeded one inch.

To complete the backing-up maneuver, the vehicle must
decelerate before stopping, then accelerate in the opposite
direction. This maneuver can be accomplished easily using
the control strategy outlined in Section V. Since the reference
translational speed of the vehicle can be specified independent
from the controller, changes in the vehicle’s speed can be spec-
ified a priori using, for example, knowledge of the locations
along the reference path where direction changes will occur.

The control gains in (5.4), k1 — k6, were chosen such that
the closed-loop controller of the vehicle tracked the desired
reference path in a smooth and stable manner. Both experi-
mental results and a simulation of the closed-loop controller
have shown that unstable motion can be obtained for certain
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choices of the control gains. Along with the choice of control
gains, the estimation procedure also affects the stability of
closed-loop performance. When large residuals occur between
the predicted locations of the visual cues and the actual
observed locations of the visual cues, large changes in the
estimates of the position and orientation of the vehicle may
also occur. These changes in the estimates which are based
on visual observations can effect the closed-loop stability of
the controller. If, for example, large discontinuities in the
position and orientation estimates of the vehicle occur, then
the error in the direction normal to the desired reference path,
en, and the error in orientation from the desired reference
path, ey, will also be large resulting in a large value of the
commanded control variable given by (5.4). Such large values
of the commanded control have been observed to destabilize
the closed-loop controller.

Finally, the choice of the reference translational speed of
the vehicle, ¢, also affects the stability of the closed-
loop controller. Cox [11] has suggested that the control gains
should be scaled inversely by the translational speed of the
vehicle, thus reducing the commanded control variable when
the vehicle is moving fast. A similar method for scaling the
control variable according to the translational speed of the
vehicle has been implemented on the vehicle presented in this
paper. Recently a linear performance and stability analysis of
the entire closed loop control system for the nonholonomic
vehicle has been completed [21]. This analysis has verified
the above experimental findings concerning the choice of the
PID control gains and the choice of the reference speed of
the vehicle.

VII. CONCLUSION

A method for combining current and past observations of
visual cues with wheel rotation information to produce optimal
position and orientation estimates has been presented. The
estimation procedure is carried out via the extended Kalman
filter for a system which uses the average of the two forward
drive wheel rotations as the independent variable. The filter
continuously produces accurate position and orientation esti-
mates throughout a structured environment. A novel method
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has been developed which accounts for the finite time interval
between the acquisition of a visual image and the detection of
cues in that image. Desired reference paths are taught based on
the sequence of accurate estimates. A closed-loop controller is
also presented which precisely tracks complex reference paths.

Future work includes developing image analysis algorithms
for detecting naturally occurring features in the environment
for use as visual cues. A second camera which will increase
the chance of detecting cues not present in the image plane
of the other camera will be added to the vehicle to increase
the workspace of the vehicle. While no provision has yet been
made for an unanticipated obstacle avoidance capability, the
tracking algorithm presented in this paper is inherently com-
patible with such a capability because of its time-independence
and its ability to return to the reference path following a large,
unexpected departure.
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